In my previous blog post on reinforcement learning I demonstrated a way to get a gentle introduction into this field by using Keras-RL2. While writing that I found it quite difficult to get an overview of the many reinforcement learning frameworks available today which all have different levels of maturity. In this post I will dive into how to set up a reinforcement learning experiment using stable-baselines 3 which provides you an even quicker way to get started.
Read More ›
I recently had written a Python program to perform some performance calculations over the results from a regression model. The program was not too complex but the sheer number of calculations to be performed made it quite slow and resulted in a runtime of several hours. In my search for a way to utilize the multiple cores of the machine the program was running on I came across the Ray package from https://www.ray.io/ which makes it very easy to distribute a single-core process onto multiple cores. Read More ›
In this post I will present a fast solution for loading CSV data into HANA by using Node.js. In the last year I have been working with Node.js as a generic command line programming tool I have noticed that as it has been optimized for fast I/O many problems are really faster when converted into JavaScript and run in Node.js. Read More ›
Back in 2014 the city of New York put online a dataset with yellow cab rides comprising a full year of data. Back then I remember struggling quite a bit with managing the sheer volume of the dataset involved, trying out various alternatives for reading in the full dataset. After a few years SAP introduced an “Express edition” of their HANA in-memory database which allowed you to run a 32 GB database just from your own hardware. That was enough to load a full years’ worth of data and be able to analyze it using a standard SQL approach. Read More ›
This is part 2 in a two-part series of blogs on large-scale and explainable forecasting using APL. In part 1 I have outlined a way to utilize the APL library for in-database training of a regression model in HANA in order to be used together with an external Node.js inference script. In this part of the blog I will dive deeper into built-in functionality to retrieve insights into a trained model which is called the ‘model debrief’. Read More ›